Animacy influences segmental phonology: The velar-sibilant alternation in BCMS

Marko Simonović, University of Graz marko.simonovic@uni-graz.at

Velar-sibilant alternation in BCMS

- Highly morphologised process
- Velars $/ \mathrm{k}, \mathrm{g}, \mathrm{x} / \rightarrow$ sibilants / ts $, \mathrm{z}, \mathrm{s} /$ in front of $/ \mathrm{i} /$-initial suffix.
$/$ ruk-i/ \rightarrow rutsi 'hand(dat/loc)'
- Not all /i/-initial suffixes trigger the alternation.
- Even those that trigger the alternation, do so at different rates.

Categorical (non-)sibilarisation

Imperative of the \varnothing / e conjugation	$/$ pek-i/ \rightarrow petsi 'bake’ $/$ rek-i/ \rightarrow retsi 'say' $/$ leg-i/ \rightarrow lezi ${ }^{〔}$ lie down’
Genitive plural of some nouns with a citation form in $-a$ and a CC-final stem.	/bajk-i/ \rightarrow bajki 'fairy tales(gen)’ $/$ majk-i/ \rightarrow majki 'mothers(gen)' $/$ mang-i/ \rightarrow mangi 'mangas(gen)' $/$ fresk-i/ \rightarrow freski 'frescos(gen)'

Almost categorical sibilarisation

Nominative plural of nouns with a citation form in a consonant	/obelisk-i/ \rightarrow obeslistsí 'obelisks' $/$ kirurg-i/ \rightarrow kirurzi 'surgeons' $/$ monarx-i/ \rightarrow monarsi 'surgeons' but exceptionally: $/ \operatorname{det} \mathrm{k}$-i/ \rightarrow det $\mathfrak{J k i}$ 'guys' /pelazg-i/ \rightarrow pelazgi ‘Pelasgians’ /bronx-i/ \rightarrow bronxi 'bronchi'

Medium sibilarisation ratio

Dative/locative singular of nouns with a citation form in $-a$	/bajk-i/ \rightarrow bajēsi' 'fairy tale(dat/loc)' $/$ majk-i/ \rightarrow majtsii' 'mother(dat/loc)' $/$ lozink-i/ \rightarrow loziŋki/lozintsi 'password(dat/loc)'; /fresk-i/ \rightarrow freski/frestsi 'fresco(dat/loc)' /tsurk-i/ \rightarrow tsurki ${ }^{\text {'girl(dat/loc) }}$ ' $/$ alg-i/ \rightarrow algi 'alga(dat/loc)'

Research question

- What are the predictors of sibilarisation triggered by dat/Loc.sG/i/?

Candidate 1: GEN.pL /i/.

Never triggers the alternation.
This may block sibilarisation (e.g., by Lexical Conservatism).
bank-a vs kriŋk-a
'bank'

	Singular	Plural
Nom	bank-a	bayk-e
Gen	bayk-e	banak-a ?? bayk-i *bank-a
Dat/Loc	bants-i *bank-i	bank-ama
Acc	bank-u	bayk-e
Voc	bank-o	bayk-e
Ins	bayk-om	bayk-ama

bayk-a vs krigk-a
'disguise'

	Singular	Plural
Nom	krijk-a	krink-e
Gen	krijk-e	krijk-i *krinak-a *kriŋk-a
Dat/Loc	krijk-i *krints-i	krink-ama
Acc	krijk-u	krink-e
Voc	krijk-o	krijk-e
Ins	krijk-om	krijk-ama

Candidate 2: Animacy

Hints from BCMS descriptive literature.
Silić \& Pranjković (2005: 161):

- names of persons and animals never alternate,
- inhabitants and nationals never alternate.
'Minimal pairs' from Težak (1986: 401-402)
Podrav[ts]-i ' $\operatorname{factory}$ name(dat/loc)' Zor[ts]-i 'factory name(dat/loc)'
Podravk-i 'woman for Podravina(dat/loc)' Zork-i 'human name(dat/loc)'

Candidate 3: Target velar (/k/ vs. /g/ vs. /x/)

Težak (1986:401): /k/ sibilarises the most, and /x/ the least.

Candidate 4: Monosyllabic base

Monosyllabic bases may resist the alternation in order to maintain recoverability.
$/$ kuk-i/ \rightarrow kuki 'hook(dat/loc)'
/okuk-i/ \rightarrow okutsi 'curve(dat/loc)'

Candidate 5: $\mathbf{C}_{\mathbf{1}}$ in stem-final CCs

Obstruent stops and affricates as $\mathbf{C}_{\mathbf{1}}$ don't go well with sibilants.

Measuring sibilarisation (and GEN.PL /i/) based on corpus data

Sibilarisation in dat/loc.sg (the dependent variable) and gen.pl /i/ measured as ratios of tokens of the specific form in the corpus.

- lozinka 'password' has 3 dat/loc.sg tokens: 1 lozijki and 2 lozintsi.
- The sibilarisation ratio for lozinka is 0.67 .
- lozinka has 21 gen.pl tokens and all of them are loziŋki (0 loziŋka, 0 lozinaka).
- The gen.pl/i/ratio for lozinka is 1 .

Study 1: CC-final stems in hrWaC

GEN.PL /i/ and $\mathbf{C}_{\mathbf{1}}$ only apply to CC-final stems.

- Independent variables
- GEN.PL/i/ (ratio),
- Animacy (1 or 0),
- Monosyllabicity (1 or 0),
- $\mathbf{C}_{\mathbf{1}}=$ stop/affr ($1=$ obstruent stop/affricate, $0=$ all others $)$.
- Final velar(/k/or/g/or/x/)
- Needed to be excluded due to extremely few items with /g, $\mathrm{x} /$.

Study 1: Data set and first annotation

- In hrWaC (Ljubešić \& Klubička 2014), a CQL search was conducted for lemmas ending in -CGa, where C is any consonant and G is any velar.

- The results were ranked by frequency.
- The 130 most frequent nouns were copied to a separate table and annotated for Animacy, Monosyllabicity, $\mathbf{C}_{1}=$ stop/affr and Final velar.
- Extremely uneven distribution of the final velars: no final $/ \mathrm{x} /$, final $/ \mathrm{g} /$ in only 3 items and final $/ \mathrm{k} /$ in 127 items.
- Items that don't have a final $/ \mathrm{k} /$ were excluded and replaced with /k/-final items.

Study 1: Getting the ratios

- CQL searches for DAT/LOC.SG and GEN.PL were conducted
- In each case two conguruent adjectival words + target from

■ [word = ".*oj"] [word = ".*oj"] [word = "lozin(c|k)i"]
■ [word = ".*ih"] [word = ".*ih"] [word = "lozin(ki|aka|ka)"]

- Search results manually cleaned and the two ratios were calculated for each noun.
- The nouns for which one of the searches yielded an empty result were removed and supplanted by new words from the lemma frequency ranking.

Study 1: Regression model

Predictor	beta	p	Uniqueness	r	Fit
GEN.PL_i	-0.15	0.02	2%	-.07	
Animacy	-0.56	$<.001$	30%	$-.52^{* *}$	
Monosyllabicity	-0.07	0.33	0%	-.04	
C1_stopaffr	-0.50	$<.001$	22%	$-.44^{* *}$	
					$R^{2}=.521^{* *}$

Study 2: VG-final stems in srWaC*

- Independent variables
- Animacy (1 or 0),
- Monosyllabicity (1 or 0),
- Final velar (/k/ or /g/ or / $\mathrm{x} /$)
- $/ \mathrm{g}, \mathrm{x} /$ lumped together because rare.
*Study conducted in collaboration with the participants of the course Collecting and analyzing corpus and experimental data in hypothesis-driven linguistic research at the University of Novi Sad.

Study 2: Data set and first annotation

- In srWaC (Ljubešić \& Klubička 2014), a CQL search was conducted for lemmas ending in -VGa, where C is any vowel and G is any velar.
- [lemma $=$ ". ${ }^{*}$ (a $\left.\left.|\mathrm{e}| \mathrm{i}|\mathrm{o}| \mathrm{u}\right)(\mathrm{k}|g| \mathrm{h}) \mathrm{a} "\right]$
- [lemma $\left.={ }^{*} .{ }^{*}(\mathrm{~b}|\mathrm{c}| \mathrm{c}|\mathrm{c}| \mathrm{d}|\mathrm{d}| \mathrm{f}|g| \mathrm{h}|\mathrm{j}| \mathrm{k}| | \mathrm{m}|\mathrm{n}| \mathrm{p}|\mathrm{r}| \mathrm{s}|\mathrm{s}| \mathrm{t}|\mathrm{v}| \mathrm{z} \mid \check{\mathrm{z}}) \mathrm{r}(\mathrm{k}|g| \mathrm{h}) \mathrm{a} "\right]$
- The results were ranked by frequency.
- The 300 most frequent nouns were copied to a separate table and annotated for Animacy, Monosyllabicity and Final velar.
- Uneven distribution of the final velars: $19 / \mathrm{x} /$-final stems, $79 / \mathrm{g} /$-final stems and $202 / \mathrm{k} /$-final stems.
- Turned into a binary variable: /k/-final items vs. /g,x/-final items.

Study 2: Getting the ratios

- 2 CQL searches for DAT/LOc.SG were conducted:
- Preposition + target form

■ [lemma $=$ " $(\mathrm{o}|\mathrm{u}|$ na|prema|k|ka)"] [word $=$ "bara(c|k)i"]

- Congruent adjectival word + target form

■ [word = ".*oj"] [word = "bara(k|c)i"]
■ [word = ".*(o|e)m"] [word = "vladi(k|c)i"]

- Search results manually cleaned and the ratio calculated for each noun.
- The nouns for which the search yielded an empty result removed and supplanted by new words from the lemma frequency ranking.

Study 2: Regression model

Predictor	beta	p	Uniqueness	r	Fit
Animacy	-0.43	$<.001$	17%	$-.53^{* *}$	
Monosyllabicity	-0.29	$<.001$	7%	$-.44^{* *}$	
Velar_k	0.26	$<.001$	7%	$.37^{* *}$	
					$R^{2}=.454^{* *}$

Zooming in on Animacy

- Animates and inanimates in both studies have a different mean sibilarisation ratio
- Study 1: animate: 0.07 , inanimate: 0.57 ;
- Study 2: animate: 0.15 , inanimate: 0.81
- Few animate nouns are attested with sibilarisation. In both datasets combined, only 7 animate nouns are found that have sibilarisation ratios above 0.4.
- Study 1 (29 animates): majka 'mother' and djevojka 'girl(friend)',
- Study 2 (41 animates): supruga 'wife', unuka 'granddaughter', sluga 'servant', svastika 'sister-in-law and vladika 'bishop'.
- They all refer to roles.

Animates vs. Inanimates in Study 1

SR_anim

Animates vs. Inanimates in Study 2

Where else Animacy matters

- ACC.SG in the main 'masculine' declension
- t-og tip-a 'that-ACC.SG guy-ACC.SG' vs. t-aj tip 'that-ACC.SG type-ACC.SG'
- Not amenable to a phonological account.
- dat/loc.sG ending $-u$, that realises its underlying High tone only in inanimate monosyllables with stems in a single consonant.
- tí:p-u'guy-DAT/Loc.sG' vs. ti: $p-u^{\prime}$ 'type-DAT/LOc.sG' (see Martinović 2012 for a recent quantitative analysis).

Uniting the two DAT/LOC.SG observations?

- Non-modular solutions:
- Special Faithfulness constraints replicating the animacy scale from names to roles.
- Modular solutions:
- Animates are spelled out differently due to an additional projection.

Issues to take into account

- The limitation on sibilarisation in animates does not generalise to other inflectional endings.
- /tfex-i/ \rightarrow tJesi 'Czechs'
- /slovak-i/ \rightarrow slouatsi 'Slovaks'
- Roles behave as regular animates with the DAT/LOC.SG ending -u.
- /brát-ú/ \rightarrow brát-u 'brother.DAT/LOC.SG'
- /kú:m-ú/ \rightarrow kú:m-u 'best man.DAT/LOC.SG'

References

Ljubešić, N \& Klubička, F. (2014). \{bs,hr,sr\}WaC - Web corpora of Bosnian, Croatian and Serbian. In Felix Bildhauer \& Roland Schäfer (eds.), Proceedings of the 9th Web as Corpus Workshop (WaC-9), 29-35.
Maretić, T. (1963). Gramatika hrvatskoga ili srpskoga književnog jezika. Zagreb: Matica hrvatska.
Martinović, M. (2012). The Interaction of Animacy with Phonetic and Phonological Factors in Neoštokavian Pitch Accents. 29th West Coast Conference on Formal Linguistics (pp. 161-168). Cascadilla Proceedings Project. Silić, J., \& Pranjković, I. (2005). Gramatika hrvatskoga jezika: za gimnazije i visoka učilišta. Zagreb: Skolska knjiga.
Težak, S. (1986). Sibilarizacija u suvremenomu hrvatskom književnom jeziku. Filologija, 14, 395-402.

