Animacy influences segmental phonology: The velar-sibilant alternation in BCMS

Marko Simonović, University of Graz marko.simonovic@uni-graz.at

Velar-sibilant alternation in BCMS

- Highly morphologised process
- Velars /k, g, x/ \rightarrow sibilants /ts, z, s/ in front of /i/-initial suffix.

/ruk-i/ → rutsi 'hand(dat/loc)'

- Not all /i/-initial suffixes trigger the alternation.
- Even those that trigger the alternation, do so at different rates.

Categorical (non-)sibilarisation

Imperative of the Ø/e	/pek-i/ → petsi 'bake'
conjugation	$/\text{rek-i}/ \rightarrow \text{retsi}$ 'say'
	/leg-i/ \rightarrow lezi 'lie down'

Genitive plural of some nouns with a citation form in *-a* and a CC-final stem.

/bajk-i/ → bajki 'fairy tales(gen)'
/majk-i/ → majki 'mothers(gen)'
/maŋg-i/ → maŋgi 'mangas(gen)'
/fresk-i/ → freski 'frescos(gen)'

Almost categorical sibilarisation

Nominative plural of	/obelisk-i/ → obeslistsi 'obelisks' /kirurg-i/ → kirurzi 'surgeons'
nouns with a	/monarx-i/ → monarsi 'surgeons'
citation form	
in a consonant	but exceptionally:
	/det∫k-i/ → det∫ki 'guys'
	/pelazg-i/ → pelazgi 'Pelasgians'
	/bronx-i/ → bronxi 'bronchi'

Medium sibilarisation ratio

Dative/locative/bajk-i/ \rightarrow bajtsi' 'fairy tale(dat/loc)' $/majk-i/ \rightarrow majtsi' 'mother(dat/loc)'$ singular of nouns with a /lozink-i/ → loziŋki/lozintsi 'password(dat/loc)'; citation form /fresk-i/ → freski/frestsi 'fresco(dat/loc)' in -a $/tsurk-i/ \rightarrow tsurki$ 'girl(dat/loc)' $/alg-i/ \rightarrow algi 'alga(dat/loc)'$

Research question

• What are the predictors of sibilarisation triggered by DAT/LOC.SG /i/?

```
Candidate 1: GEN.PL /i/.
```

Never triggers the alternation.

This may block sibilarisation (e.g., by Lexical Conservatism).

baŋk-a vs kriŋk-a

'bank'

	Singular	Plural
Nom	baŋk-a	baŋk-e
Gen	baŋk-e	banak-a ??baŋk-i *baŋk-a
Dat/Loc	bants-i *baŋk-i	baŋk-ama
Acc	baŋk-u	baŋk-e
Voc	baŋk-o	baŋk-e
Ins	baŋk-om	baŋk-ama

baŋk-a vs kriŋk-a

'disguise'

	Singular	Plural
Nom	kriŋk-a	kriŋk-e
Gen	kriŋk-e	kriŋk-i *krinak-a *kriŋk-a
Dat/Loc	kriŋk-i *krints-i	kriŋk-ama
Acc	kriŋk-u	kriŋk-e
Voc	kriŋk-o	kriŋk-e
Ins	kriŋk-om	kriŋk-ama

Candidate 2: Animacy

Hints from BCMS descriptive literature. Silić & Pranjković (2005: 161):

- names of persons and animals never alternate,
- inhabitants and nationals never alternate.

'Minimal pairs' from Težak (1986: 401-402)

Podrav[ts]-i 'factory name(dat/loc)' Zor[ts]-i 'factory name(dat/loc)'

Podravk-i 'woman for Podravina(dat/loc)' Zork-i 'human name(dat/loc)'

Candidate 3: Target velar (/k/ vs. /g/ vs. /x/)

Težak (1986:401): /k/ sibilarises the most, and /x/ the least.

Candidate 4: Monosyllabic base

Monosyllabic bases may resist the alternation in order to maintain recoverability.

/kuk-i/ → kuki 'hook(dat/loc)' /okuk-i/ → okutsi 'curve(dat/loc)'

Candidate 5: C₁ in stem-final CCs

Obstruent stops and affricates as C_1 don't go well with sibilants.

/mask-i/ → mastsi 'masl(dat/loc)' /zbirk-i/ → zbirtsi 'collection(dat/loc)' /stavk-i/ → stavtsi 'item(dat/loc)' Measuring sibilarisation (and GEN.PL /i/) based on corpus data

Sibilarisation in DAT/LOC.SG (the dependent variable) and **GEN.PL** /i/ measured as ratios of tokens of the specific form in the corpus.

- *lozinka* 'password' has 3 DAT/LOC.SG tokens: 1 *lozinki* and 2 *lozintsi*.
 - The sibilarisation ratio for *lozinka* is 0.67.
- *lozinka* has 21 GEN.PL tokens and all of them are lozinki (0 lozinka, 0 lozinaka).
 - The GEN.PL /i/ratio for *lozinka* is 1.

Study 1: CC-final stems in hrWaC

GEN.PL /i/ and C_1 only apply to CC-final stems.

- Independent variables
 - \circ GEN.PL /i/ (ratio),
 - Animacy (1 or 0),
 - Monosyllabicity (1 or 0),
 - $C_1 = \frac{1}{0} \frac{1}{0}$ others).
 - \odot Final velar (/k/ or /g/ or /x/)
 - Needed to be excluded due to extremely few items with /g, x/.

Study 1: Data set and first annotation

- In hrWaC (Ljubešić & Klubička 2014), a CQL search was conducted for lemmas ending in -CGa, where C is any consonant and G is any velar.
 [lemma = ".*(a|e|i|0|u)(b|c|č|ć|d|d|dž|f|g|h|j|k|l|m|n|nj|p|r|s|š|t|v|z|ž)(k|g|h)a"]
- The results were ranked by frequency.
- The 130 most frequent nouns were copied to a separate table and annotated for Animacy, Monosyllabicity, C_1 =stop/affr and Final velar.
- Extremely uneven distribution of the final velars: no final /x/, final /g/ in only 3 items and final /k/ in 127 items.
 - Items that don't have a final /k/ were excluded and replaced with /k/-final items.

Study 1: Getting the ratios

- CQL searches for DAT/LOC.SG and GEN.PL were conducted
 - In each case two conguruent adjectival words + target from
 - [word = ".*oj"] [word = ".*oj"] [word = "lozin(c|k)i"]
 - [word = ".*ih"] [word = ".*ih"] [word = "lozin(ki|aka|ka)"]
- Search results manually cleaned and the two ratios were calculated for each noun.
- The nouns for which one of the searches yielded an empty result were removed and supplanted by new words from the lemma frequency ranking.

Study 1: Regression model

Predictor	beta	p	Uniqueness	r	Fit
GEN.PL_i	-0.15	0.02	2%	07	
Animacy	-0.56	<.001	30%	52**	
Monosyllabicity	-0.07	0.33	0%	04	
C1_stopaffr	-0.50	<.001	22%	44**	
					$R^2 = .521^{**}$

Study 2: VG-final stems in srWaC*

- Independent variables
 - Animacy (1 or 0),
 - Monosyllabicity (1 or 0),
 - Final velar (/k/ or /g/ or /x/)
 - /g, x/ lumped together because rare.

* Study conducted in collaboration with the participants of the course *Collecting and analyzing corpus and experimental data in hypothesis-driven linguistic research* at the University of Novi Sad.

Study 2: Data set and first annotation

- In srWaC (Ljubešić & Klubička 2014), a CQL search was conducted for lemmas ending in -VGa, where C is any vowel and G is any velar.
 [lemma = ".*(a|e|i|o|u)(k|g|h)a"]
 - $\circ \quad [lemma = ".*(b|c|č|ć|d|f|g|h|j|k|l|m|n|p|r|s|š|t|v|z|ž)r(k|g|h)a"]$
- The results were ranked by frequency.
- The 300 most frequent nouns were copied to a separate table and annotated for **Animacy**, **Monosyllabicity** and **Final velar**.
- Uneven distribution of the final velars: 19 /x/-final stems, 79 /g/-final stems and 202 /k/-final stems.
 - Turned into a binary variable: /k/-final items vs. /g,x/-final items.

Study 2: Getting the ratios

- 2 CQL searches for DAT/LOC.SG were conducted:
 - Preposition + target form
 - $\blacksquare \quad [lemma = "(o|u|na|prema|k|ka)"] [word = "bara(c|k)i"]$
 - Congruent adjectival word + target form
 - [word = ".*oj"] [word = "bara(k|c)i"]
 - [word = ".*(o|e)m"] [word = "vladi(k|c)i"]
- Search results manually cleaned and the ratio calculated for each noun.
- The nouns for which the search yielded an empty result removed and supplanted by new words from the lemma frequency ranking.

Study 2: Regression model

Predictor	beta	p	Uniqueness	r	Fit
Animacy	-0.43	< .001	17%	53**	
Monosyllabicity	-0.29	< .001	7%	44**	
Velar_k	0.26	< .001	7%	.37**	
					$R^2 = .454^{**}$

Zooming in on Animacy

- Animates and inanimates in both studies have a different mean sibilarisation ratio
 - Study 1: animate: 0.07, inanimate: 0.57; Ο
 - Study 2: animate: 0.15, inanimate: 0.81 Ο
- Few animate nouns are attested with sibilarisation. In both datasets combined, only 7 animate nouns are found that have sibilarisation ratios above 0.4.
 - Ο
 - Study 1 (29 animates): *majka* 'mother' and *djevojka* 'girl(friend)'. Study 2 (41 animates): *supruga* 'wife', *unuka* 'granddaughter', *sluga* 'servant', *svastika* 'sister-in-law' and *vladika* 'bishop'. Ο
 - They all refer to **roles**.

Animates vs. Inanimates in Study 1

Animates vs. Inanimates in Study 2

Where else Animacy matters

- ACC.SG in the main 'masculine' declension
 - *t-og tip-a* 'that-ACC.SG guy-ACC.SG' vs. *t-aj tip* 'that-ACC.SG type-ACC.SG'
 - Not amenable to a phonological account.
- DAT/LOC.SG ending -u, that realises its underlying High tone only in inanimate monosyllables with stems in a single consonant.
 - ti:p-u 'guy-DAT/LOC.SG' vs. ti:p-u 'type-DAT/LOC.SG' (see Martinović 2012 for a recent quantitative analysis).

Uniting the two DAT/LOC.SG observations?

- Non-modular solutions:
 - Special FAITHFULNESS constraints replicating the animacy scale from names to roles.
- Modular solutions:
 - Animates are spelled out differently due to an additional projection.

Issues to take into account

- The limitation on sibilarisation in animates does not generalise to other inflectional endings.
 - $\circ \quad /\widehat{t} fex-i/ \rightarrow \widehat{t} fesi 'Czechs'$
 - /slovak-i/ → slovatsi 'Slovaks'
 - Roles behave as regular animates with the DAT/LOC.SG ending -u. • /brát-ú/ \rightarrow brát-u 'brother.DAT/LOC.SG'
 - $/k\dot{u}:m-\dot{u}/\rightarrow k\dot{u}:m-u$ 'best man.DAT/LOC.SG'

References

Ljubešić, N & Klubička, F. (2014). {bs,hr,sr}WaC - Web corpora of Bosnian, Croatian and Serbian. In Felix Bildhauer & Roland Schäfer (eds.), Proceedings of the 9th Web as Corpus Workshop (WaC-9), 29–35.

Maretić, T. (1963). Gramatika hrvatskoga ili srpskoga književnog jezika. Zagreb: Matica hrvatska.

Martinović, M. (2012). The Interaction of Animacy with Phonetic and Phonological Factors in Neoštokavian Pitch Accents. 29th West Coast Conference on Formal Linguistics (pp. 161-168). Cascadilla Proceedings Project. Silić, J., & Pranjković, I. (2005). Gramatika hrvatskoga jezika: za gimnazije i visoka učilišta. Zagreb: Školska knjiga.

Težak, S. (1986). Sibilarizacija u suvremenomu hrvatskom književnom jeziku. Filologija, 14, 395-402.